
Abstract The use of Gibbs sampling in making deci-
sions about the optimal selection environment was dem-
onstrated. Marginal posterior distributions of the effi-
ciency of selection across sites were obtained using the
Gibbs sampler, a Bayesian method, from which the prob-
ability that the efficiency of selection lay between speci-
fied values and the variance of the distribution were
computed, providing a lot of information on which to
make decisions regarding the location of genetic tests.
The heritability, genetic correlations and efficiencies of
selection estimated using REML and Gibbs sampling
were similar. However, the latter approach showed that
the point estimates of the efficiencies of selection were
subject to substantial error. The decision regarding selec-
tion at maturity was consistent with that obtained using
point estimates from REML, but Gibbs sampling al-
lowed the efficiencies of selection to be interpreted with
more confidence. The decision regarding early selection
differed from that based on REML point estimates. Gen-
erally, the decisions to make early selections at site B for
planting at both site B and A, and to make selections at
maturity at each individual site, were robust to different
priors in the Gibbs sampling.

Keywords Gibbs sampling · REML · Bayesian analysis ·
Selection efficiency

Introduction

Forest sites are heterogeneous due to variations in soils,
weather conditions, or other factors. The manner in
which genetic tests are deployed affects genetic gain in
production populations in the presence of genotype × en-
vironment (GE) interactions. The question faced by
breeders is where one should locate genetic tests so as to
ultimately maximise gain in production populations. The
conventional method of determining the optimal selec-
tion environment is to estimate the efficiency of select-
ing at one site for planting at another site, using the
method of indirect selection described by Falconer
(1989). In order to estimate the efficiency of selection,
heritabilities and genetic correlations need to be known.

It is usual for these parameters to be known with er-
rors, perhaps after estimation using restricted maximum
likelihood (REML, Paterson and Thompson 1971). A
major limitation of this process is that whilst an estimate
of the efficiency of selection may be calculated its distri-
bution and variance are difficult to obtain, adversely in-
fluencing the efficiency of decision-making. This prob-
lem is made more error-prone if sample sizes are low,
since this increases the chance that the decision may be
sensitive to the sampling errors. The large standard er-
rors associated with the genetic correlation estimates,
particularly in tree breeding designs with few parents,
are an example where this sensitivity may occur. Hence,
decisions on whether or not genetic tests should be locat-
ed at one site may lack conviction through incomplete
information. 

An alternative approach that might overcome this lack
of confidence is to use Monte Carlo Markov Chain
methods such as Gibbs sampling. This method can gen-
erate random samples from the joint distribution of the
parameters, and can assist in decision making because
for each sample of parameters the decision can be made
as if they are true values. Thus by repeating the process
over and over, a number of samples are obtained from
the true distribution of the decision-making process. Fur-
thermore, notwithstanding the complexity of decision,
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Gibbs sampling enables one to estimate the probability
that certain decisions will provide the desired results,
producing considerably more information on which to
base decisions compared to the point estimates from
REML. Finally, the approach can make use of prior in-
formation, and nuisance parameters are integrated out.

The Gibbs sampler has recently been used for esti-
mating variance components in animal-breeding applica-
tions (Jensen et al. 1994; Sorensen et al. 1994; Wang et
al. 1994; Van Tassell et al. 1998; Yazdi et al. 1999). In
addition, Sorensen et al. (1994) used the Gibbs sampler
to estimate uncertainty in response to selection. It ap-
pears that Gibbs sampling has not been used in tree
breeding, but has been used in forest inventories (Green
et al. 1992; Green and Strawderman 1996). The present
study will investigate use of the Gibbs sampling in deci-
sion-making on the choice of site for locating progeny
tests. These results will be compared to those obtained
by REML. The paper is an extended version of an ab-
stract presented at the 24th Southern Forest Tree Im-
provement Conference (Gwaze and Woolliams 1997).

Materials and methods

Data

Data for the Gibbs sampler were heights assessed at ages 10 years
and 23 years in genetic tests located at two sites in Zimbabwe.
These two ages were selected because early selection at 10 years
was predicted to be effective in Pinus taeda (Gwaze et al. 1996)
and 23 years was close to the harvest age (since, alternatively, the
rotation age of P. taeda is 25 years). The tests were located at
Tarka (site A) and Martin (site B) in Chimanimani, Zimbabwe,
and the sites differed mainly in mean annual rainfall, being 2,156
mm at the former and 1,016 mm at the latter. The two sites were
selected because they represented the region where most of the
commercial plantations of P. taeda are located, and therefore mak-
ing decisions regarding the location of progeny tests between
these two heterogeneous sites are critical. Details of the genetic
tests are given by Gwaze et al. (1997). Briefly, the tests were
planted in 1972, and the genetic material comprised 140 full-sib
families that originated from an incomplete factorial mating de-
sign involving 8 male and 15 female parents. Trees were planted
at 2.4 × 2.4 m spacing and each plot comprised ten trees. The tests
comprised three replicates and ten blocks per replicate, in a triple-
lattice design. Systematic thinning was carried out by removing
every other tree in each plot at 10 years of age. At that age height
was assessed on trees that were felled after thinning.

Overview of the Bayes theorem

The objective of the Bayes methods is to compute the posterior
distribution of the parameter of interest. To start with, a prior dis-
tribution, which represents the belief about the parameter before
any data are observed, is assumed. The posterior distribution then
represents the updated belief after viewing the data. The posterior
distribution is expressed as proportional to the product of the prior
distribution of the parameter and the conditional distribution of the
data, given the parameter (likelihood) (Gilks et al. 1996):

p(θθ|y) ∝∝ p(θθ)p(y|θθ), (1)

where y is the data and θθ is the parameter. Therefore, when a uni-
form prior, a lack of prior-knowledge for the distributions of the pa-
rameter, is used, the posterior distribution is simply the likelihood of
the parameter given the data (van Tassell and van Vleck 1996).

Gibbs sampling

Gibbs sampling is a method of numerical integration that allows
inferences to be made about joint or marginal distributions of the
parameters of interest. The Gibbs-sampling algorithm is an updat-
ing sampling scheme that requires random independent draws of
variables from all of the full conditional distributions. The full
conditional distribution is the distribution of a variable given all
other parameters in the model. Gibbs sampling integrates out the
other parameters leaving the distribution of the parameter in ques-
tion conditional on the data (i.e. the marginal posterior distribution
of the parameter), unlike REML where only joint inferences 
are possible. After obtaining samples from the marginal distribu-
tions, the means and variances of the distribution can be estimat-
ed. For derivation of the joint and conditional posterior distribu-
tions of parameters see Jensen et al. (1994), Wang et al. (1994),
van Tassell and van Vleck (1996).

The following quadrivariate tree model was used to estimate
covariance components for height across the two sites and the two
ages (hence four traits):

(2)

where:
yi = the vector of observations for trait i,
bi = the vector of fixed effects for trait i,
ai = the vector of random tree (additive genetic) effects for trait i, 
Xi = the incidence matrix for fixed effects for trait i,
Zi = the incidence matrix for additive direct effects for trait i,
ei = the vector of residual effects for trait i. For i = 1, 2, 3, 4.
The conditional distributions of ai and ei were each assumed to be
quadrivariate normally distributed, and to be independent of each
other as follows:

where G = A*Go, A is the numerator relationship matrix between
the trees and Go is the additive genetic variance-covariance matrix
of traits, and R = I*Ro, I is the identity matrix and Ro is the residu-
al variance-covariance matrix of traits. The residual covariances in
our study were assumed to be zero because the traits were as-
sessed on separate, but genetically related, trees across sites.
Therefore, genetic covariance between any two traits exists, but no
environmental covariance. The effect of the replicate was consid-
ered fixed. The data was pre-adjusted for the block effects before
the analysis. The assessments of height at the two sites and two
ages were treated as different traits. At 10 years the trees assessed
were those that were removed after thinning. Therefore, trees as-
sessed between the two ages within a site were also different so
justifying our assumption of zero residual covariances between
ages. The analysis of the four traits simultaneously was done using
the Multi Trait Gibbs Sampling for Animal Models program
(MTGSAM, Van Tassell and Van Vleck 1995).

Priors were assigned to unknown parameters (the variance
components and fixed effects) in the model. Uniform improper
(flat) prior distributions were assumed for fixed effects. Two types
of prior distributions were assumed for the additive random genet-
ic covariance matrix: inverted Wishart and uniform distributions.
The Wishart (IW) distribution is a matrix generalization of the
univariate chi-square distribution (Sorensen 1997). The inverted
Wishart distributions are used as prior distributions for covariance
because of computational simplicity (van Tassell and Van Vleck
1996). Other prior distributions can be employed but the Gibbs
sampling algorithm would be more complex (van Tassell and Van
Vleck 1996). Uniform distributions have been used for compari-
son in order to determine if the assumption of no knowledge of
prior distribution would influence the inferences. The mode of the
joint posterior should correspond to the REML estimates if a uni-
form prior is used (Gianola and Fernando 1986). 
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For a proper prior (IW) distribution, the shape parameter (de-
grees of freedom) should be 2 more than the order of the matrix
(Van Tassell and Van Vleck 1995). Given that the order of the ma-
trix was 4 for the additive covariance matrix (four traits), a shape
parameter 6 was the minimum necessary for the prior to be proper,
thereby indicating minimum possible belief in the parameters for
the prior distributions of the variance components. When the co-
variance between two traits is zero, as in the case with the residual
covariances, then the traits are considered as members of different
groups (Van Tassell and Van Vleck 1996) giving an order of the
matrix for residual covariances of 1 and a shape parameter of 3. 

The additive genetic and residual (co)variance components es-
timated using REML were used as the starting values. The ratio-
nale for this was that it was difficult to find reports of additive and
residual covariances from the literature. 

Several priors were used in order to conduct a sensitivity anal-
ysis on the effect of changing the priors on the expected values of
the posterior distributions. The following four sets of parameters
for the priors were employed:

Prior 1. REML variance and covariance estimates used.
Prior 2. The additive variances at young age = 20, those at older

ages = 15, all additive covariances = 10, and the residual
variances = 5 (estimates were 5–10 times the REML esti-
mates used as Prior 1). 

Prior 3. REML variance estimates were used but the covariances
were zero. 

Prior 4. REML variances and covariance estimates were used as
starting values and the shape parameter of 0 (a flat prior)
were used for both the additive and residual covariances.
A flat prior indicates no prior knowledge for the distribu-
tions of the variance components.

The MTGSAM programs were employed to generate the samples
and posterior estimates of the variance components. The first
5,000 iterations were not stored, to ensure that the samples saved
were from the proper stationary posterior distributions. Thereafter,
a total of 100,000 iterations were made, and samples stored at ev-
ery 100th iteration to reduce autocorrelations, giving a total of
1,000 samples of ten additive genetic and four residual (co)vari-
ance estimates stored. From these, heritability, genetic correlations
and efficiencies of selection were calculated for each sample (see
below for the calculation of efficiency), and inferences about the-
efficiencies of selection were made by directly computing summa-
ry statistics from the resulting distributions derived from the 1,000
samples. Parameters stored from the analysis were the 14 co(vari-
ance) components. 

In order to check for convergence, the Gibbs sampler was run
several times with different lengths of the Gibbs sampling chain
and different numbers of iterations between saving samples to
make sure that the similar estimates were obtained each time. This
was confirmed, hence convergence was assumed. 

For each prior, the independence of samples was tested using
autocorrelations of the efficiencies of selection. The samples were
moderately correlated: for example, the 1st-order lag-correlations
ranged between 0.45 and 0.74, when the saved samples were cho-
sen at every 100th iteration. The behaviour of the higher-order
lag-correlations suggested a 1st-order auto-regressive model.
Therefore, the sequence of 1,000 samples was analysed using an
ARIMA(1,0,0) model to provide estimates of both the auto-corre-
lation (ρ) and the sample mean, and an estimate of its standard er-
ror (δ). This was done using GENSTAT 5. The ARIMA (1,0,0) is
a first-order autoregressive model with no differencing and no
moving average (Box and Jenkins 1976). The sampling variance
was calculated as v2/(1-ρ2)+δ2, where v2 was the innovation vari-
ance estimated by the ARIMA model. The innovation variance in
time-series models is analogous to the residual variance. Although
the results presented concerning efficiency arise from these ana-
lyses, the estimates differed very little from the simple sample
mean and sample variance. 

Although there was no explicit need for the decision-making
process to derive single-point estimates of genetic parameters,
these were examined from the means and modes of the posterior

distributions that were computed directly from the Gibbs samples.
Since the posterior distributions were asymmetric, small differ-
ences between the Gibbs estimates of the posterior mean and
REML estimates (the joint mode of the likelihood) would be ex-
pected irrespective of the prior assumption. A likelihood-ratio test
was performed to examine the differences between the Gibbs pos-
terior means and REML estimates: the difference in the log-likeli-
hoods with and without fixing the (co)variance components of the
Gibbs sampling estimates were multiplied by –2, and compared
with a chi-square distribution with the degrees of freedom equal to
the number of fixed parameters (i.e., 14).

Efficiency of selection

The efficiency of selecting at site A (trait x) for planting at site B
(trait y), relative to both selecting and planting at site B, was esti-
mated using the following equation, assuming that selection inten-
sities and generation intervals are equal (Falconer 1989):

E = hx rA hy
−−1, (3)

where rA is the genetic correlation between traits x and y, hx and
hy are the square root of the heritability of traits x and y, respec-
tively. These efficiencies indicate the relative loss in genetic gain
from selecting at one site for planting at another. The above equa-
tion is normally used when the trees at different sites are assessed
at the same ages (e.g., Pswarayi et al. 1997).

Since forest trees have long generation intervals, early selec-
tion, which is an indirect selection where performance at a young
age is used as an indicator of mature age performance, is 
preferred. For example, the optimum selection age for height in P.
taeda in the USA can be as young as 4 years (Newman and 
Williams 1991). Efficiencies of early selection are mainly deter-
mined within a site (King and Burdon 1990; Riemenschneider
1988) or on data pooled across sites (Gwaze et al. 1997; McKeand
1988). The efficiency of early selection across sites has not been
given much emphasis in forest trees despite its importance for
identifying the best selection site. Given two ages and two sites,
our study investigated the efficiency of early selection on the ma-
ture performance within and between sites. This gives the reliabil-
ity of early selection at different sites. Assuming that the selection
intensities are equal, the relative efficiency of early selection at
site A (trait x) and B (trait z) on the mature performance at site B
(trait y) was calculated as:

(4)

where rxy = the genetic correlation between traits x and y; rzy =
the genetic correlation between traits z and y; hx, hz and hy are the
square root of the heritability of traits x, z and y, respectively; Lx,
Lz and Ly are the generation intervals of traits x, z and y, respec-
tively. Since Lx = Lz in our study, the ratio of the efficiencies of
early selection across and within sites reduces to:

E = hx rxy hz
−−1 rzy

−−1. (5)

In this study, calculations of the efficiency of early selection were
based on selection at 10 years, because selecting at 10 years was
found to be the most efficient (Gwaze et al. 1996).

Decision-making

The decision-making process was used to compare the effective-
ness of: (1) early selection when tests on different sites are mea-
sured at a young age to improve performance at maturity, and (2)
mature selection when both tests are measured at a mature age to
improve performance at maturity. The probability that the efficien-
cy of selection was greater than 0.7 and 1.0 was estimated. An ef-
ficiency of 0.7 was selected because efficiencies lower than 0.7
would justify extra costs of having separate progeny tests (unpub-
lished result). The standard error of the probability was estimated
as:
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(6)

where p is the probability and nE is the effective number of sam-
ples. An effective number of samples was calculated for each effi-
ciency with each prior as nE = 1,000(1- ρ)/(1 + ρ) (Tierney
1991).

Results

Genetic parameters using prior 1

Using a log-ratio test, covariance estimates from Gibbs
sampling and those from REML were not significantly
different.

The estimated heritabilities and genetic correlations
using Gibbs sampling and REML are shown in Tables 1
and 2, respectively. The heritability estimates from Gibbs
sampling (0.58–0.78) were slightly larger compared to
those from REML (0.39–0.73), but the genetic correla-
tions were similar. However, the differences were small,
and therefore unlikely to be important. In all cases the ge-
netic correlations across sites appear lower at older ages.

Selection efficiencies using prior 1

The estimated selection efficiencies are shown in Table 3.
While the estimates of efficiencies of early selection
across sites showed variations between sites, those for se-
lection at maturity across sites did not. The distributions
of the selection efficiencies were slightly skewed. For
mature-age selections, the posterior modes were similar
to calculations based on estimates from REML, but those
for early selection were not (Table 3). 

The probability that the efficiency of early selection
at site B for planting at site A was greater than 0.70 was
0.95 (Table 3), indicating that early selection at site B
would result in little-loss in gain at site A at harvest age,
compared to early selection at site A. In fact, the proba-
bility that more gain would be obtained from early selec-
tion at site B compared to site A is 0.59. The high effi-
ciency of selection at site B was attributed to a high ge-
netic correlation between heights at 10 years at site A
and those at site B at 23 years, which was as high as that
between the 10- and 23-year heights at site B (Table 1).

Due to much lower across-site genetic correlations
than within-site correlations, the probability that the effi-
ciency of early selection at site A for planting at site B
was greater than 0.70 was only 0.35, and the probability
that early selections at site A would result in higher gain
at site B at harvest age than early selections at site B was
0. The results suggest that site B is a better progeny test
site since selections made here will result in little loss in
gain at site A, and may even result in higher gain at site
A at harvest age than early selection at site A, whereas
early selection at site A would severely reduce progress
at site B. Therefore, there was little risk of failure when
selections were made at site B.

If selection were carried out at 23 years of age (har-
vest age), the probabilities that the efficiencies of selec-
tion at alternative sites are greater than 0.7 were all low:
0.20 for selection at site A for planting at site B, and
0.25 for selection at site B for planting at site A, indicat-
ing that these sites were different. Therefore, if selec-
tions are to be made at maturity, separate progeny tests
should be established for the sites since selections at al-
ternative sites would result in substantial losses in gain at
the sites. The low efficiencies of selection are attributed
to the low genetic correlation between heights assessed
at these two sites at 23 years.

Sensitivity analysis

The heritabilility estimates obtained from using the dif-
ferent priors were similar, but some genetic correlations
showed sensitivity. However, the main interest lay in the
sensitivity of the efficiency of selection to the different
priors. These results are shown in Tables 4 and 5.

The mean of the posterior distributions were general-
ly comparable for all the efficiencies considered. How-
ever, some differences were evident: means tended to be
lower with the flat improper prior (Prior 4), and EA1B2
(i.e., the efficiency of selecting at site A at 10 years for
planting at site B compared with early selection at site
B) was notably higher when using Prior 2 compared to
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Table 1 Estimated heritabilities (in bold) and genetic correlations
for height based on Gibbs sampling using prior 1; standard devia-
tions of the marginal posterior distributions are in parenthesis

Item HT10 HT10 HT23 HT23 
(site A) (site B) (site A) (site B)

HT10 (site A) 0.78 
(0.09)

HT10 (site B) 0.88 0.66
(0.07) (0.11)

HT23(site A) 0.71 0.67 0.58
(0.15) (0.17) (0.16)

HT23 (site B) 0.57 0.80 0.49 0.62
(0.17) (0.11) (0.21) (0.17)

Table 2 Estimated heritabilities (in bold) and genetic correlations
for height based on REML; their standard errors are in parenthesis

Item HT10 HT10 HT23 HT23 
(site A) (site B) (site A) (site B)

HT10 (site A) 0.73
(0.14)

HT10 (site B) 0.90 0.59
(0.05) (0.14)

HT23(site A) 0.77 0.72 0.40
(0.08) (0.15) (0.14)

HT23 (site B) 0.55 0.82 0.51 0.39
(0.21) (0.07) (0.25) (0.15)



other priors (Table 4). The standard deviations of the
posteriors also showed general agreement, but EA1B2 for
Prior 2 and EB1A2 (i.e., the efficiency of selecting at site
B at 10 years for planting at site A compared with early
selection at site A) for Prior 4 had larger standard devia-
tions due to a small number of extreme outliers. The au-
tocorrelations for Prior 2 (range 0.09 to 0.41) were nota-
bly lower than for other Prior distributions (range 0.41 to
0.83). 

Whilst the differences between priors were evident
again in the proportions of samples with E > 0.7 and
E > 1.0, the comparisons among the efficiencies were
generally robust (Table 5). Thus efficiency of early se-
lection at site B for planting at site A was consistently
high using different prior information, and more prom-
ising than selection at site A for planting at site B. Se-
lection at maturity across sites was not efficient (Table

5). This indicates that the decision on site preference
was robust to the prior information included in the
Gibbs sampling.

Discussion

The use of Gibbs sampling in decision-making in proge-
ny test location was demonstrated. Variance components
were estimated using MTGSAM, and the estimated com-
ponents were employed to derive heritability estimates
and genetic correlations, which were in turn used to esti-
mate the efficiencies of selection. The study illustrated
that the point-estimates of the efficiencies of selection
were subject to substantial error, particularly those in-
volving selections at maturity. Gibbs sampling provided
a method for constructing the posterior distribution of
the efficiencies of selection from which the variations of
the estimates were obtained, and the probabilities that
the estimates were within a specified range were also es-
timated. A further advantage of the Gibbs sampling ap-
proach was that it allowed a simultaneous estimation of
the components of variances and covariances for the four
traits. However, heritability and genetic correlation esti-
mates from a series of bivariate REML analyses and
those from multivariate Gibbs sampling analyses were
not significantly different. 

Using this approach, site B emerged as a better site to
locate progeny tests than site A if early selection is
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Table 3 REML and Gibbs
sampling estimates of efficien-
cies of selection for height,
standard deviations (SD) of the
marginal posterior distribu-
tions, and the probabilities that
the selection efficiencies (E)
are greater than 0.7 and 1.0

Item REML Posterior Posterior SD P(E > 0.7)a P(E > 1.0)
estimate mode mean

EA1B2
b 0.84 0.68 0.59 0.22 0.35 0.0

EB1A2
c 0.75 1.04 1.11 0.34 0.95 0.59

EA2B2
d 0.53 0.49 0.48 0.27 0.20 0.01

EB2A2
e 0.49 0.53 0.50 0.28 0.25 0.02

a SE of the probabilities were less than 0.045
b EA1B2 = efficiency of selecting at site A at 10 years for planting at site B compared with early
selection at site B at 10 years
c EB1A2 = efficiency of selecting at site B at 10 years for planting at site A compared with early 
selection at site A at 10 years
d EA2B2 = efficiency of selecting at site A at 23 years for planting at site B compared to direct 
selection at site B
e EB2A2 = efficiency of selecting at site B at 23 years for planting at site A compared to direct 
selection at site A

Table 4 Sensitivity of the efficiency of selection to different pri-
ors (see Materials and methods for descriptions of priors). Results
are the means of marginal posterior distributions and the efficien-
cies of selection for height. The estimated standard deviations of
the posterior distribution are in parentheses

Item Prior 1 Prior 2 Prior 3 Prior 4

EA1B2 0.59 (0.22) 0.82 (0.79) 0.65 (0.35) 0.52 (0.28)
EB1A2 1.11 (0.34) 1.03 (0.26) 1.07 (0.29) 1.05 (0.78)
EA2B2 0.48 (0.27) 0.41 (0.18) 0.40 (0.24) 0.31 (0.29)
EB2A2 0.50 (0.28) 0.45 (0.20) 0.47 (0.28) 0.32 (0.30)

Table 5 Sensitivity of the effi-
ciency of selection to different
priors (see Materials and meth-
ods for descriptions of priors).
Results on probabilities that the
selection efficiencies (E) are
greater than 0.7 and 1.0, with
standard errors in parentheses

Item Probability (E > 0.7) Probability (E > 1.0)

Prior 1 Prior 2 Prior 3 Prior 4 Prior 1 Prior 2 Prior 3 Prior 4

EA1B2 0.35 0.62 0.50 0.27 0.0 0.22 0.07 0.03
(0.037) (0.016) (0.029) (0.036) (–) (0.014) (0.015) (0.014)

EB1A2 0.95 0.82 0.95 0.82 0.59 0.49 0.64 0.53
(0.015) (0.016) (0.015) (0.019) (0.035) (0.021) (0.033) (0.024)

EA2B2 0.20 0.03 0.08 0.08 0.01 0.0 0.01 0.0
(0.041) (0.008) (0.027) (0.027) (0.010) (–) (0.01) (–)

EB2A2 0.25 0.11 0.19 0.08 0.02 0.0 0.02 0.0
(0.043) (0.015) (0.036) (0.028) (0.014) (–) (0.013) (–)



practised. This decision arose from the data despite the
relatively few parents in the dataset. However, if selec-
tions are made at maturity, which is highly unlikely,
separate progeny tests should be established for the two
sites. The decision regarding selection at maturity is
consistent with that obtained using point estimates from
REML, but Gibbs sampling allowed the efficiencies of
selection to be interpreted with more confidence. How-
ever, the decision regarding early selection with Gibbs
sampling differed from that based on REML point esti-
mates. Using REML, the efficiencies of early selection
at both site A and site B were greater than 0.7 indicating
that either of the two sites could be a suitable location
for progeny tests; in contrast, with Gibbs sampling, it
was clear that site B was a better site to locate progeny
tests. Furthermore, if a choice had to be made between
the two sites, site A would be selected using point esti-
mates from REML, resulting in different decisions aris-
ing from the two approaches. The difference between
the results from Gibbs sampling and REML is attribut-
able to the greater information derived using the former
method, and an improved risk analysis. The study dem-
onstrates the advantage of having some measure of vari-
ability associated with the estimates of the efficiency of
selection.

A sensitivity analysis was conducted to study the in-
fluence of priors. Changing the shape of the priors and
the magnitude of their parameters made no serious im-
pact on the posterior distributions of the efficiencies of
selection, nor upon the outcome of the selection deci-
sion. Assuming that the prior distributions were flat and
improper gave a higher variance of the marginal posteri-
or distribution of early selection at site B than assuming
that the priors were inverted Wishart distributions.
Sorensen et al. (1994) also found that variances were
higher when flat priors were used. The lack of agreement
might be due to improper distributions when flat distri-
butions are assumed as the priors were combined with a
weak likelihood due to poor information in the data. The
use of uniform priors for variance components was dis-
couraged because the chance of obtaining an improper
posterior distribution was high (Van Tassell and Van
Vleck 1995). However, the decision to establish progeny
tests at site B was insensitive to prior information despite
the limited data.

The present study indicate that, even in this simple
decision problem, Gibbs sampling can be an attractive
approach to decision-making in progeny test location, as
more information to make inferences about the parame-
ter of interest can be derived from the analyses than is
possible from REML. In this example we have used a
relatively simple decision rule based on the estimated
parameters. A fuller analysis of the problem may devel-
op a more-complex decision process than considered
here and these benefits would be expected to be sus-
tained, or even possibly be greater. The major advantage
of Gibbs sampling is that it gives a full marginal posteri-
or distribution of a parameter of interest, and any feature
of this distribution can be computed including the proba-

bility statements, giving a richer analysis than is possible
with REML. Therefore, Gibbs sampling offers tree
breeders the possibility of making better-informed deci-
sions and, over time, its use will become less limited by
high computational demands. 
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